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Abstract--A sphere is allowed to move with three degrees of freedom in an axisymmetric flow field 
and general formulae, correct to the third power of the sphere's radius, are developed for the Stokes 
resistance experienced by the sphere. These are shown to depend on the bchaviour within the sphere 
of the reflected velocity fields which arise from the presence of fixed boundaries at finite distances 
from stokeslcts placed at the sphere's center. Application is made to the stagnation flow at a plane, 
Poiseuille flow and flow past a sphere and some comparisons made with exact formulae. Solutions 
are given for asymmetrically placed stokeslets near a hole in a plane wall or a disk. 

I. INTRODUCTION 

Many problcms in chemical enginccring concern the motion of a viscous fluid containing 
suspendcd particlcs in the prcscncc of fixed boundarics. Whcn, as is often the case, the 
viscous strcsscs dominate thc inertia cffccts, the fluid flow is essentially described by the 
crccping flow equations but this zcro Rcynolds numbcr simplification has the disadvantage 
of slowcr convergence of numcrical computations bccause the hydrodynamic intcraction 
bctwccn a particle and a fixed boundary decays in 3-D only at the rate of inverse distance. 
This same disadvantage also applies to the commonly used mathematical device known as 
the method of rcflcctions in which a solution is constructed itcrativcly by alternately 
ignoring the boundaries and the particles. The restrictions placed upon particle size and 
position by this weak interaction technique arc eliminated by the recently expanded strong 
interaction theories available from mathematical analysis applicable when it is possible to 
fit all boundaries into a single family of coordinate surfaces. Thus for exact analyses the 
geometry is restricted to two spheres or one sphere and a plane. Hence, for other geomctrics, 
Ganatos et al. (1978) have developed a strong interaction theory in which a numerical 
collocation technique is applied to exactly formulated solutions of the equations of motion. 
It is amply illustrated by the calculations made by these authors (1980) for a sphere 
between parallel planes. 

Thcrc remains though the motivation to widen, alongside this computational progress, 
thc scope of mathematical analysis by developing a uniform approximation procedure for 
a single sphere moving with the appropriate three degrees of freedom in an axisymmetric 
flow. First order corrections in terms of the sphere radius have been listed by Happel & 
Brenner (1973) for the force and torque coefficients and the second order contributions 
arisc from the well known Fax~n laws. In this paper general formulae, correct to third 
order, arc developed by an essentially simplc, though algebraically complicated, applica- 
tion of the method of matched asymptotic expansions which exploits the fact that near 
the sphere the fluid is almost unaware of the fixed axisymmetric boundaries whilst away 
from the sphere the latter appears as a point singularity. The "'near field" solution is 
equivalent to the Lamb's spherical harmonic expansions employed by Ganatos et al. (1978, 
1980) but in the "far f ield", the additional velocities are due to appropriate singularities-- 
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stokeslet, dipole etc.--placed at the center of the sphere and their calculation depends only 
on the geometry of each directed singularity with the axisymmetric fixed boundaries. The 
required strengths of these singularities are determined up to the third power of the sphere 
radius E by the condition that they be the same in the two constructed solutions. In contrast 
to the method of reflections, only terms which can contribute to the required order of 
approximation are retained in the calculation. The meridianai angle is measured, without 
loss of generality, from the sphere's center and the formulae obtained for the two force 
components and torque involve values and derivatives of the imposed fluid flow and the 
singular fields at the sphere center only. General experience with the application of 
asymptotic methods suggests that the assumption that the sphere is small is unlikely to 
be as restrictive as might be expected from the mathematical argument. Further, the 
extension of the method to more than one sphere would appear to be plausible. 

Application is made to three disparate cases--stagnation flow at a plane, Poiseuille flow 
and flow past a sphere--in each of which the pair of force formulae are found to separate. 
Theorems are given to show that the dipole fields can be obtained from suitable second 
order derivatives of the corresponding stokeslet fields and to verify that for each of the 
above cases the stokeslet fields are such that the reflected velocity component parallel to 
the stokeslet is a symmetric function of the field and singularity positions. Comparison is 
made with the strong interaction theories available for a sphere moving in a quiescent fluid 
near a plane and for axisymmetric flow past two relatively moving spheres. A further 
interesting application is to the pressure driven flow through a circular hole in an 
infinitesimally thin plane wall, for which the axisymmetric stokeslet field was constructed 
by Davis et ai. (1981). Their solution is used to obtain numerical estimates of the force 
coefficients for an axially placed sphere that show remarkably good agreement with those 
calculated by Dagan et al. (1982) using the above mentioned boundary collocation 
technique. When the sphere is off-axis, the force formulae do not simplify and there follows 
the construction of the reflected fields due to asymmetrically placed stokeslets. The normal 
velocity component at the wall is cancelled by an obvious extension of the axisymmetric 
solution. However the cancellation of the tangential velocity at the wall requires a field 
whose every Fourier mode except the zeroth leads to two connected sets of dual integral 
equations. These are solved by reduction to a single Fredholm integral equation whose 
solution can be written down by inspection. The relatively minor modifications for the 
complementary disk problem are included for completeness. 

2. FORMULATION OF THE PROBLEM 

The equations of motion for a Stokes flow are 

grad p =//V-'q, div q = 0 [2. I ] 

where q(x,y, : )  is the velocity field, p ( x , y , z )  the fluid pressure and # the viscosity. In 
addition q must satisfy the no-slip condition at any solid boundaries. 

Let the cylindrical polar coordinates (p, co, z) be related to the above Cartesians by 
x = p cos co, y = p sin co and consider an axisymmetric flow field W(p, : )  bounded inter- 
nally or externally by an axisymmetric boundary S which may or may not intersect the axis 
p = 0. Then W satisfies [2.1] and vanishes on S. 

Suppose that this flow field W is disturbed by the presence of a small solid sphere of 
radius ~, which is moving with velocity U*.~ + V*i  and rotating with angular velocity f~*) 
and whose center is instantaneously at (x0, 0, Zo). These three components are the only ones 
which can be induced from rest by the axisymmetric flow. It will be assumed that the 
Reynolds number of the flow is sufficiently small for inertia effects to be ignored. Then, in 
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Figure I. A sketch of envisaged flow. 

this quasi-static approximation, the disturbance velocity field w(x, y, z) satisfies [2.1] and the 
boundary conditions 

w=0 on S [2.2] 

w--.0 as (p2+z2)'/2"'oo [2.3] 

q = W + w = U*~? + V*i + Q*[(: - Zo).~ - (x - Xo)/] at r = (: [2.4] 

where r 2 ffi (x - :Co) 2 + y2 + (z - ..'0) 2. 
The required quantities here are the force (F,~ + F:~) and torque L.~ exerted by the fluid 

motion on the small moving sphere and will be calculated up to terms of  order ~ by a 
method based on inner and outer expansions. For small values ore, the fluid near the sphere 
is essentially unaware of  the fixed boundary whilst to the fluid far from the sphere, it appears 
to be a point singularity. The use of  inner and outer coordinates can be avoided since all 
expansions are regular in z. 

3. D E R I V A T I O N  O F  T H E  F O R C E  A N D  T O R Q U E  F O R M U L A E  

The imposed velocity field W =  Wp(p,z): + W:(p,z)2 has Cartesian components 
W, = (x/p)Wp, W~ --- (.v/p)Wp and Wz and for the purpose of  satisfying condition [2.4], a 
suitable expansion of  W in the neighbourhood of  (x0, 0, z0) is required. The Taylor expan- 
sion is simplified by the divergence fre¢ property of  W and by the even, odd and even 
dependence on y of  Wx, Wj, and 14:, respectively. However, since [2.4] is to be applied at 
r --¢, a suitable representation of  W in the "inner field" is 

W = curl [X(r, 0, ~):] + curl: [~F(r, 0, qb):] [3.11 

where 

V2(r -'X) = 0 [3.2a] 

V'(r - ' ~ )  = O. [3.2b] 

Because the above mentioned Taylor expansion is symmetric in the pairs (x, Xo) and (z, :0), 
it is convenient that the spherical polar angles in [3.1] be defined so that the axis is in theft 
direction. Thus write 

x - :Co = r s in 0 sin ~b, y -- • cos 0, z = r sin 0 cos ~ .  
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Then, when the Taylor expansion of  W up to second order is written in the form (3.1), it 
follows, with P~" denoting an associated Legendre function, that: 

, o.,) 
X ~ ~ \  0--= ~-~x" r :Pl(c°sO)+ r~P:~(cosO)(a~cosq5-b~sin4~) [3.31 

I I gW, .  
~ ~r"Pl' (cos 0)(W< sin q~ + W:cos ~)  + ~ w r ~ P : ( c o s O )  

+ , rSPfl(cosO) t~ 7. \ (~: . - -0~') cos 2~ + + sin 2~b 

I 
+ ~-~ r~P~ ~ (cos O)(a: sin ~b + b: cos ~b) + r~PI t (cos O)(as sin q~ + bl cos ~)  

I , ,  
+ ~-6 r e~- (cos 0)(a4 sin 3~b + b4 cos 3~b ). [3.4] 

Here the disjoint sets of  coetficients {,6;I < j  < 4} and {h,' I < j  < 4 I. are given by 

a, = - \ Ox,~: 

I (O:W: 
a, = - ~ \ Ox,9: 

O.,:O)' ] + -~--; - - -  1" = - 
t, , : -  ,~y'. )' t ~  

£_wg , 
~ ) - ~ \ 7 . 7  ,~y" ) - f 6  v 'w'"  

l i e :w ,  o'_-5, I 
b: -- - 7 \ ~  OyfO: / 4 t ,3:- ' ~9-~"j - ~ v: w:, 

I (O:W.. 

I (O:W~ 
b, = ~ \ ~.,:0: 

~ ) - -d v w '  + 3 \  ,,.-: 

ayaz ) - g v- w.. + 5 [ g . ~  

, 7  ) - 7> t. ~.7 

5 

<~y: ) -  ~ t <-575-~ 

a, = ~ V" IV, 

h, = ~ V" W: 

,!:W,~ 

~ 2  

<~,>,- ) 

~,v.,-) 

[3.51 

and the components of  W and their derivatives are evaluated at (xo, 0, %). 
Now if the additional velocity field w is represented in the form 

w = curl {z(r, 0, ~)t ;]  4- curl: [I,b (r, 0, ~)l:]  [3.6] 

where Z, ¢' satisfy [3,2a, b] respectively, then [2.4] implies that Z and i/s must satisfy the 
boundary conditions 

Z + X = ~ * r : c o s 0  

i , . + ~  =-~r 'smO(U*sin(p  ~ + V * c o s ~ )  at r =~. [3.7] 

O 
t3~( ~ + ~ ) = r  sin 0(U* sin ~b + V* cos ~b) 

The other boundary conditions [2.2] and [2.3] on w apply to the "outer field" where the 
representation [3.6] is inappropriate. 
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Expansions [3.3] and [3.4] show that the reflection of  the imposed velocity field W at 
the sphere boundary r = ~ can be obtained by constructing the sets of fundamental velocity 
fields curl [X,,,.,(r, 0)~:~,°,'m~b]. curl: [~ . , ( r .  O)F~md~] (i = O, I) such that, for 0 < m < n and 
n>~l .  

X""~-~r"+lP ." (cosO) .  , b m ~ . r " + 3 P . ' ( c o s O )  as r--+~ 
~b Io} [ ~" "-" 
" r  m , n j  

[Z .... ¢~ .  satisfy [3.2a, b] respectively] 

z.,.. = o = ~,,'.'.. = ~ ¢.,.. 

Then. by elementary calculation. 

= (r n ÷ I _ _  _ _  X , , . ,  

a t  r = ~ .  

"~r; + ~) P'~ (cos O) 

,+(. - ~} 7 j  &" (cos o) 

+ )-TJe:(coso) 

[3.81 

(n I> I) [3.91 

in [3.9] the restriction n >tl ensures that all reflected velocities vanish as r - ,oo .  
Corresponding to the solutions [3.9], the net force exerted on the sphere by the fluid is 

,o~ c"s  ~,  .t, ~oj sin ~,  ¢, ~o) again zero for n >12 and when n = I is 12nlU:(:',.'~..P) for ¢,,., v v.,.i o.i 
respectively and 20nl~C3(L Y:, ~) for ~,l.,'~'"~ co,:~ q~, ~l.,'~'"J sin 4), ~0.~'1'") respectively. Effectively there 
is a force - 8np(L S:,~) due to each stokeslet term (: - :o, x - Xo, y)  respectively in ¢, but 
none otherwise. Similarly the solutions [3.8] yield a net torque exerted on the sphere by 
the fluid which is zero for n I> 2 and when n = I is 8n/ae3(~, .~,~) for Xl.t cos ~, X~., sin 4), 
X.., respectively. Thus there is a torque -8n/t(z',.~,.~) due to each rotlet term 
( : -  : o , x -  xo, y)  respectively in X but none otherwise. 

The contribution to w due to the reflection of  the field W by the sphere without taking 
account of  the fixed boundary S can now be written down by comparison of [3.8] and [3.9] 
with [3.3], [3.4] and [3.7]. Thus 

, dW. 
Z -I" X - f l * r  2 c o s  0 = Zo.i i ~ x "  - f~*  + ~ Zl '2(al  

+ further terms 

cos 4) - bi sin q~) 

[3.10a] 

! , . 1 a,(o}rtw (IV.. V*)cos~]  ¢ + W - - ~ r ' s m O ( U * s i n d p + V * c o s ~ ) = ~ v ,  mt~ , -  U * ) s i n ~  + - 

+ g ¢'0': --~y + / C'o'] + "~x" sin 24~ - \ ~.~x 

I .t.mt~ sin ~b + b, cos ~b) + ¢,~ll(a ~ sin ~ + b3 cos ~) Jf" ~'~ 9 ~ 1,3~.u2 , . 

  )cos o] 

I 
.~.~o~t. sin 3~b + b4cos 3q~) + further terms. [3.10bl 
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Consideration of the n = 1 terms in [3.10a, b] shows that, at this stage of  the calculation, 
the torque is in the f direction and normal to the force, in agreement with the axial 
symmetry of  W. Further, of  the eight coefficients given by [3.5], only the Laplacian pair 
a3 and b, can enter the required formulae for F, and F.. whilst none affects the torque 
coefficient L. Evidently the neglect of  higher order terms in the expansions [3.3] and [3.4] 
causes no errors in the F,, F. and L formulae since powers of r i> 4 in [3.3] and 1> 5 in 
[3.4] yield values of n t> 2 in [3.10a, b]. 

The further terms in [3.10a, b] involve positive powers of ~ and are due to reflections 
from the rigid boundary S. Since only terms up to order ~4 in the "far field" are sought. 

,/,,~ and ./,~0~ may be discarded from [Yl0a, b]. it follows from [3.8] and [3.9] that ;~t..,, ~,~.3 ~3._~ 
Then the remaining functions are given, to the required accuracy, by 

t[ 3 

= - -  4 Cr + 2 r  
'Y t.I r2 

I,I r4  5 1 

s, nO..,.o.:'"'°' : j r '  - O, 

..,- O,,:',] ,, .,.'°' [ ] ~,2.~= r ~ - ~ E  + 0 ( ~  5) P,:(cosO) 

[3.1 I] 

where P.," (cos 0) = 3 sin-" 0. So the "far field" behaviour of [3.10a, b] contains, to order ~4, 
terms which correspond to the following velocity singularities at r = 0. From X0.1 there is 

curl(C°-~Sr'-"~O')~si~O~"~[(z-z°)'~-(x-x°)~]r" . [3.12a] 

which is a rotlct in the ); direction. From wt.t'~'m~ and ~'u,'t'u} there are 

curl"( r s in0 t :  sin q~)cos  = ~(x-~-~0° ) z  + - r l ( ; )  [3.12b] 

which are stokeslets in the .~ and -; directions respectively. From ~. ,.~,,/J ~.°1 there are 

( n  ) ,,(:- (;) curl" si 0 i  sin q~ = ~  [3.12c] 
COS 2 o ) r ~ 

which are dipoles in the .~ and 3 directions respectively. From ~-0.2'/'t°) and @to,2..,, there are 

r ' 1 ] 
- "~ P2 (cos 0)~: 5 

curl2/ l  , . cos = ( " - : ° ) + r  

L~ P," (cos O)r sin 2~ ala:o j Lala.roJ '-r 

[3.131 

which are combinations of  the x0 and z0 derivatives of the stokeslet singularities. The 
remaining combination yields the rotlet singularity [3.12a]. 

The additional terms in the expressions [3.10a, b] for Z and ff arise firstly from the 
reflections by S of  the above singular velocity fields. Let II, U, V, u and v be velocity fields 
which satisfy [2.1]. [2.3] and are such that 
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t l  = ~ [(:  - :o)-f - (x  - Xo):']. 

U = -~ (x - xo) + - V = --; ( :  - :o) + 
r ° • r" • 

3i  k 3i  " 
u = T z ( X - X o ) -  ~ ,  v = ~ ( Z - Z o ) - ~  

on S. 

Then the required singular velocity fields, satisfying [2.1], [2.2] and [2.3], are 

I 
r--5_ ~ [(: -- Zo).'~ -- (x -- Xo)~ ] -- ~ ( x ,  y. : ;  x o, Zo) (rotlet) 

i .~- 
(x - Xo) + - - U(x, y, : ;  xo, z0) 

r "  r 

/7 3, 

-~ ( :  - :o) + "-- - V ( x ,  y ,  : ;  Xo, Zo) 
r "  r 

(stokeslets) 

(x - xo) - 7 - u(x, y, =; x0, zo) 

?. 
~ ( :  - :,,) - ~ - v (x ,  y ,  : ;  xo, =o) 

(dipoles) 

and,  f rom [3.13] 

(~._ 3Y2'~ - 7 )  • - ,9 u/,gXo - ,9 v/,9 o 

3~ 
77 [(: - zo) 2 - (x - xo):] + ,9 U/,gXo - d V/,gZo 

6~ 
7i  (x  - Xo)(: - :o) - ,9 U/,gZo - ,9 V/dxo. 
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[3.141 

The  expansions  near  r = 0 o f  these reflected velocity fields are required to second or  
zero order  in • according as the cor responding  singularity in [3.1 I] is o f  o rder  ~ or  ~3 
respectively and are o f  the same form as that  given for W by [3.1], [3.3], [3.4] and [3.5]. 
Only the first term o f  [3.4] contr ibutes  to the zero order  terms o f  W and the required 
expansions  o f  dU/dxo etc. can also be written in the s impler  forms 

dx---~ "" curl" sin 0 sin ~ + ~ cos ~b i , etc., 

?u 
f~ = 2 \~"~z0 d--~o " t3.151 

The  remaining combina t ion  o f  derivatives yields an expression for f l  in terms o f  U and 

V, namely 
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provided it is understood that xo and :o derivatives are taken before (x. y..-) is set equal 
to (xo. 0. :o)- Since. for a differentiable function f,  

p.~o j (x, x0) , = --?x,(flxo. x,) - -q-~.xf{X. x,,) [3.161 
J ~  = r l  ~ = 'q)  

the consistency with the result obtained by differentiating the Taylor series of U is evident. 
Thus the disturbance velocity field w has "outer field" expansion of the form 

W ~ A (~)[curl: (r sin 0 ? sin 4)) - U] + B(~ ) [curl: (r sin 0 ? cos 4)) - V] 

+C,(,)[curl:(!sinOisin4))-u]+C:(,)[curlZ(!sinOicos4))-v] 

+Dt(~)  curl 2 -~Ps(cosO)? Ox. O'oJ 

+O:(~)  curl: e"2(c°sO)ic°s24) +?x,~-O:,--~J 

- :_  ~ J  

where, as observed earlier, [3.10a, b] and [3.1 I] imply that A(~), B(~.)= O(~) whilst the 
remaining coefficients arc O((~). Then the retlcctcd velocities due to S are themselves 
reflected by the sphere in the same way as the prescribed flow W and so the required further 
terms in [3.10a, bl may be written down by comparison of  the singular field expansions 
with [3.31, [3.41 and [3.51. Thus 

0.,)  i (o., F , ( o  W, . 
z + x - n * : e o s 0 = z , , , k ~ \ - ~  ~ - ~ A ( , ) \ : :  ~ /  

2 \ O: + 0(~ ~) 

+ torque-free terms [3.18a] 

I .J, co~uW _ U*)sin 4) + ( W . -  l /*)cos 4)] ~ b + w - ~ l  r :s in O(U* sin 4) + 1/* cos 4)) = _~ ~,ut~ 

+ 6'0.., &, + . m  $~:{ - - +  stn24) \ &,. 

f l  ~o~ I ,o~aU, 
1 ,t,"~tv-'w sin4) + V-'IV. cos 4 ) ) -  A(~)~5~,1 i(U, sin 4) + U. cos 4))+ ~$o.: ?v 

+ ~ ~/..'I! Lk,-~-: + a.,- j sin 24) \ ,~.,. :_- cos 24) 

i } {I ,,,o,,V, sin4).a_l:cos4) ) +~-6@f~'.l[g-'U, sin4) +V-'U:cos4)] - B(~) ~ , , . , ,  . . 
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+ g v, 0.2, ~ + * g ~ ]  sin 2q~ - \ ~x z cos 2@ 

- } , {  + @~'l[V: V~ sin @ .  . + V" V. cos @ ] .  _ ~@(o~j,~ C,(~)(u, sin @ + u. cos @ ) .  

+ C.,(E)(v~ sin ¢ + r: cos @) + E(E)(Q, sin ~ + Q: cos @ ) 

For, ou. ] 
+ [D,(E)+ D,(E)] LOxo sin ~b + ~ c o s @  

0, ] + [D~(e) - Dz(e)] : sin 4~ + ~ .  cos ~b 

co.0]} 

+ O(~ ~) + force-free terms. 
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[3.18b] 

Equations for A (~) etc. can now be obtained by using [3.8] and [3.9] to equate the strengths 
of the respective singularities at r -- 0 in each of the velocity fields given by [3.17] and 
[3.18a, b]. The force and torque exerted by the fluid on the sphere are given, from the 
stokeslet and rotlet singularities, by 

F ~  + C-" = - 8=MA (c).,~ + B(c).-'] 

L: = - 8n#E(( )f:. 

The effective Stokes relative velocity components (6n/~c) - '(F~, F..) = - (4/3~)[A (¢), B(e )] 
are then found, after eliminating the other coefficients from the above mentioned 
equations, without inverting any expansions, to be given to order ~ by the simultaneous 
equations 

6nl,~ I - ~ l ( U ' + 4 c u ' - "  "8~ V'U'J + F'6nltE 4 g 

, , ,  ] ,  

-, .W..- V * + ~ ( ' V ' W : + e  3 ~x" - Q *  Q : - 4 e s Q :  [3.19b] 

where the coefficients of F, and F.. depend only on the location of S relative to the point 
(xo, 0, :o) and the velocity components Q,, Q.. are given by 

: ~ (  , ,  u:)+L~7+~k ~ (e,,e,) L~ 3k~ o- o u, 

,(~v,+ow. [~ o (v,, K.)] 
- ~  - -~x') (U .  u,) + Ox ° 

< 0:o V,, V..) 

[3.201 
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Also the effective relative angular velocity is given by 

L 
8nlat 3 

E(~ ) 
E 3 

I , F,  OU.'~ F. 
- - - = 5  - - + o ( , ' )  

, OW. 3 1 3 3 - ~_ - -  ~ - n * + g ¢  I + ~ u ,  ( w , -  u * ) + ~ v , ( w . -  v*) ~-  

OV. 

after inserting the O(E) solution of [3.19a, b]. Here the O(!) term is that predicted by 
Faxen's law. 

For the neutrally buoyant sphere, U*, V* and f/* are chosen so that the force 
components and torque are all zero. Then, from [3.19a, b] and [3.21]. 

5 
U * ~  w ~ + ~ : v : w ~ - ~ - Q ~  

v * ~ w : +  e z V : l , ~ - ~  

I ( ,?w, ,?w:~ ,) 
n .  ~ 5 - -  ~x ] + O(, 

[3.221 

Thus the velocity components Q, and Q:, which depend on the imposed velocity field W 
and the location of S relative to (xo, 0, zo), indicate the accuracy of the estimates of U* 
and V* obtained by the use of Faxen's law. 

For a freely moving sphere whose density is A more than that of the fluid, the buoyancy 
force - ]n~Ag3  must be balanced. Then, on inserting F, = 0, (F./6npE)--2c2Ag/gp and 
L = 0 in [3.19a, b] and [3.21] respectively, the first two of equations [3.22] are replaced by 

5 
U*,-- W,+ E2VzW,--~c~Q,+c~V, Ag/6p 

(4 ) 
V*,,, W..+~E2V"W:--~¢ Q..-E" .~-tV. .  Ag/6p 

whilst the last is unchanged in form. 
In the axisymmetric case F, and L vanish whilst [3.19b] reduces, with the aid of [3.20], 

to 

I 5 30W.. Ov. 
W . -  V*+ ~"V"W.+ ~ "----:" 

F :  " 6 " 4 Oz OZo [3.231 
I I 6rtllc I - c V.. + 71 ¢ h,: - -~ ~ ~V: V: 

This particular result could have been obtained more simply by applying the above 
procedure to the Stokes stream functions of W and w. 

The formulae [3.19a, b] and [3.21] represent the superposition of the force and torque 
results for a moving sphere in a quiescent fluid (W = 0) and a fixed sphere in a moving 
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fluid (U* = V* = t)* = 0), which cases have usually been considered separately by previous 
authors. 

The singularities in [3.8] and [3.9] are evidently those which appear in the Lamb's 
spherical harmonic expansions employed by Ganatos et al. (1978, 1980). The difference 
between the two methods lies in the way in which the coefficients are determined. In the 
boundary collocation technique a solution satisfying [2. I]-[2.3] exactly is constructed and 
a finite number of  singularity coefficients determined numerically by applying condition 
[2.4] at a finite number of  latitudes and longitudes on the sphere. In this section, the fluid 
flows incident upon the sphere have been expanded about its center in order to construct 
two solutions [3.17] and [3.18a. b] for w, the former valid away from the sphere where [2.4] 
can be ignored and the latter valid near the sphere where [2.2] is immaterial. The 
coefficients of  the singularities were subsequently determined up to a chosen power of  the 
sphere radius ¢ by requiring that they be the same in each of  [3.17] and [3.18a, b]. 

4. D E R I V A T I O N  O F  u. v FROM U. V: S Y M M E T R Y  O F  U, AND V.. 

The calculation of  the dipole reflected fields u and v can often be avoided by means 
of the following result, obtained by use of  standard Cartesian tensor notation. Let 
t,~(P, P~"~) be the j th  component of  the velocity field at P(x~,xz ,  x~) due to a stokeslet in 
the direction of  O.rk at the point P~°~(x~°~, x: (°~, x~ ¢°)) and p, the corresponding pressure field. 
Then 

t,~ = 6~ + ~ (.r~ - X/°~)(Xk - x~°~), p~ = (x~ - x~ ~°~) [4. I] 

where r: = (x, - x,~"'): + (x: - x,t"~)" + (x~ - xjt°~) 2, and, from [2. I], 

~Pk , d2t~ 
d.v, = p dx,dx~ 

[4.21 

Also let - ~ ) (P ,  p(o)) be the j th  component of  the reflected velocity field due to the rigid 
boundary S, i.e. TJ~(P, p~0~) = tj,(P, p~o~) when P lies on S. Now thej th  component of  the 
velocity field due to a dipole at pt0~ in the direction of  Ox,  is 

7 ;  )= 
I d2tjk I 

- 2 dx,'°J0x/°~ = - 2 Vo t~k 

after using [4. I] and  [4.2]. Hence the reflected velocity field due to the presence of  S in this 
dipole field has j th  component - T~ ) given by 

~ ' ( P ,  P'°') = - ~ Vo'T~(P, p~o~) [4.3] 

where Vo" is the Laplacian with respect to the position p¢o) of  the stokeslet. Thus, to 
evaluate the fields u and v in terms of  U and V, the stokeslets must be first moved to 
(xo,.vo, :o) and then Yo set equal to zero after application of  the operator V0". Hence 

: : X o , - o )  = - + + u c x ,  y ,  Xo, yo. :o) o .  ° [4.4] 
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and similarly ,for v (x ,y , - ;  Xo, Co). In terms of  polar coordinates, this procedure is much 

simplified for v since then, with xo = p,,. 

v(p cos ~. p sin o.~. : :  P0, :o) 

cos o~, p sin ¢0, : ;  Po cos ~0, P sin ~ ,  :o)]~ ° = 

= - 2 L t ~ - ~ o " ' + ' ~ P o  "~ P o : ~ o :  Jr V ( p c o s ( c o - w o ) , p s i n ( e ~ - e J o ) . z ; P o , : O  ,,,0 =0 

2 dpo" + + ~ - -  + V(p cos (o, sin : ;  Po. :0). 

As the /~ and .~ directions do not coincide when .v, :~ 0, there is no corresponding 

simplification for u. 
Substitution of  the result [4.3] into the left hand sides of[3.19a, b] shows that the third 

order terms have the alternative form 

t t I ~ it: U .  
~,  - (;:iV" b.i  - - ¢ , ( ~ , 2 . + .  ~ - ' )  U I 

U~ 

l'. V: V: 

[4.61 

where, in all quantities, ( x , y ,  z )  is set equal to (x., 0, z,,) after all differentiations have been 
completed. Clearly [4.4] shows that, if either component of  U or V is a symmetric function 
of the stokeslet and field positions, then the corresponding two terms above are equal. 

The symmetry of  U< and V. is ensured by the following result, obtained by applying 
Green's theorem to the fields (tjk - ~)(e.~,°,~ and (tjk - TJ~)(e.~,,i and simplifying as in 
Happel & Brenner (1973), section 3.4: 

kk~-- , -- T'~'~,tr . 

= - -  n , V  ( t , k  - - -  - T ~  ) l , . , ~ " )  - T~k ) , , . , . , , ,  (t,k ('~ 

• jk Jee.e~'.l njV'(tjk On - -  - -  - -  . j k  # ¢ e . t , o , , -  - -  (tjk - -  ~/,~")le.~o,,  d S  [ 4 . 7 ]  

where the normal n to S is directed into the fluid region. Now the condition that tjk = T~ ~ 
when P ~ S  makes the right hand side of  [4.7] vanish and then T~ ,  the component of  
reflected velocity parallel to the stokeslet, is a symmetric function of  the field and stokeslet 
positions. So the velocity components U,(x, y, : ;  x,,, 3"o, :o) and V..(x,y, =; x0,Yo, z0) are 

symmetric functions of  (x, y, =) and (x,, Yo, =o). 
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5. STAGNATION FLOW AT A PLANE 

Here S is the plane : = 0 so the velocity fields fL U, u, V and v evidently depend on 
(x - Xo), (y -Y0), : and :0 only, with Y0 set equal to zero. The boundary conditions [3.14] 
imply that f~,, U,,  u, .  V.. and v. are even functions of  (x - x o )  whilst f~:, U.., u:, V~ and 
v., are odd functions of  ( x - x  o). When these properties and the stagnation flow 
W = A-( - x.~ -y)~ + z:') are substituted into [3. 19a, b], it follows that the equations for 
F, and F= separate to yield 

F,[ 3 l , I , ]  
6n#~ I - ~ E U , + ~ ;  u ~ - - ~ - V " U ,  -.. - A x o : o -  U*-~Y~*f~,  

6n#¢ I -  ¢ V . + - ~ ¢ ' v . - g ¢ - V ' V . .  . . ..-A:o z -  v * - ~ ¢ Q :  

5 3 - a E  O. [5.1a1 

[5.1b] 

where f~, is given by [3.15] and 

O, = ~ Axo + a.,:o/" 
~V. 

Q: = - 2A:,, od:---:'" [5.2] 

Also [3.211 takes the form 

L I 3 3 / '0U, 
8n~u ~= - ~ A x , , - f ~ * + g c  I + ~ U ,  ( - A x o : , , -  U * ) ~  +O(c~) .  [5.31 

Now, from Blake (1971), the required stokeslet velocity components are given by 

2 I~: 
V..(x - x,,,y, : ;  : . )  = [¢5: + ( :  + :o):1'": - [~" + ( :  + :o)a] 'j: 

6fi'::,, 

[~: + (:  + :,,)'1 " 

1 (x  - x,,)" 
U,(x - xo. y, :" :,,) = [t>' + (:  + :o)"]" ~ [/5: + (-" + :,), i * 1211/2 

6::o(x - x,,)" 

[I/" + (:  + :oY'] ~/" 

0U. )  6:,(x ( & U ,  . 2(: - :o) - x,,)" 

, ..... ~.,...-::o, [~2 + ( :  + :o)'] " [~ :  + ( :  + :o)'] .... 

4..'-'o + 
[~: + (:  + :o)'] ~a 

+ 2::0 
[~2 + ( :  + =o):l.w 

[5.4] 

where ~ : =  (x - x o ) : +  y:.  The symmetry of  V.. and U, in :, :o ensures that [4.4] yields 
I '~ v: =- . ;V-V: ,  u, = -  ~V-'U~ in formulae [5.1ao b] respectively whilst the expression for 

f .  curl U shows that the torque formula [5.3] reduces to 

L I 
8nl ,  c" = - -5 Axo - fl* + O(c'~). [5.5] 

Evidently U, = ~V. when fi = 0 and, since (OV, /Ox) , ; .o  t ,~ • ,~. . . - -  - ~.(¢ ~ : / c .  ) , ~ . o  by continuity, it 
follows that 

t~V~_ I PV: ? U ,  
when fi -- 0. 

&co 2 & 0: 
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Then the symmetry of U, in z, z0 implies that f~, vanishes in [5.1a] and 

dU, dVl ~V. 3 

d:0 dx0 ~?:0 4:0" 

in [5.2]. Thus. by substitution of [5.4], the force formulae [5.1a, b] reduce to 

F, - Ax(~o - U* + 5 Ax,)E 3/Zo" 

~ 9 I ~ [5.6a] 
6rt~E I - (E/Zo) + -~ (c/Zo)- 

1 , 15 
F. Az° : -  V* +'3 E ' A - - Y  E3A/z'j 

. . . . . .  [5.6b] 
9 1 

6r~ll~ I - ~ (~/zo) + ~ (~/zo) ~ 

Note that xo does not appear in [5.6b]. Comparison of the force formulae [5.6a, b] with 
their counterparts (Brenner 1962) for the same sphere moving in a quiescent fluid bounded 
by a plane wall (the case A = 0 = f~*) shows that the relative velocity components appear 
in the leading terms, as expected, only [5.6b] has the Faxen law term (order ~:) and both 
have an O(~ ~)contribution arising from the rate of change of the imposed axisymmetrical 
flow W. 

Further. a closer examination of the O(~ 3) terms in' formuht [5.5] shows that they 
depend on the stagnation flow and the sphere's translation as well as the geometry of the 
flow boundaries. The O(~ ~) terms on the right hand side of [3.21] can be written down from 
[3.17] after noting that D~(~)= O(~ ~) and taking account of the odd and even functions 
of (x -x,,).  Thus [3.21] has the form 

s~,, -'= ~ = - 5  A x ' - _  - 5  c'(~)_ \a-. ex/-SE(~). \ ,~: ~).+o(~') 

where Ct(~)=~(-Ax~,zo-U*) .  Then, by observing that V-'U is conservative, the 
expressions (5.4) suffice to show that a more accurate form of [5.5] is 

L - ~ A.% - ~* + (¢ I-o)~(Axoz,, + U*)Iz, 
[5.7] 

5 

where the denominator correction is geometrical whilst that in the numerator indicates the 
creation of  vorticity at (x,, 0,--~) by the dipole solution excited by the relative velocity 
component ( -  Axo..-,~- U °) parallel to the plane. The axisymmetric geometry precludes a 
similar contribution from the normal component (A-,~-" - V*). 

Table I.  

1 .0  1 .5  2 . 0  2 . 5  3.{) 

c .':t, = s e t h  ~ 0 . 6 4 8 1  0 . 4 2 5 1  0 . 2 6 5 8  0 . 1 6 3 1  0 . 0 9 9 3  

F ,  6 n p ( " ~  - 1 . 4 9 3 7  - 1 . 2 9 7 9  - 1 . 1 7 2 6  - 1 . 1 0 0 3  - 1 . 0 5 9 0  

O ' N e i l l  ( 1 9 6 4 )  - 1 . 5 6 7 5  - 1 . 3 0 7 9  - 1 . 1 7 3 8  - 1 . 1 0 0 6  - 1 . 0 5 9 1  

F.,6rtpl"( - 2 . 4 5 6 9  - 1 . 7 8 5 2  - 1 . 4 0 7 7  - 1 . 2 2 1 4  - 1 . 1 2 5 2  

B r e n n e r  1 1 9 6 1 )  - 3 . 0 3 6 1  - 1 . 8 3 7 5  - 1 . 4 1 2 9  - I . . . .  0 - 1 . 1 2 5 2  
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The accuracy of  the third order truncation can be assessed in this case by comparison 
of [5.6a, b] with the corresponding exact solutions in bisphedcal coordinates given by 
O'Neill (1964) and Brenner (1961) respectively for a moving sphere in a quiescent fluid. 
On setting A = 0, the numerical values obtained are displayed in table I and show, as might 
be expected, closer agreement for F, than for F:. 

6. P O I S E U I L L E  F L O W  

Here S is the cylinder p = 1 so the velocity fields l'l, U, u, V and v evidently depend on 
x, xo, y and (= - -0) only, i.e.p, p0, co and (: - =0) in the notation of [4.5]. The boundary 
conditions [3.14] imply that f~:, U,, u,, V: and v.. are even functions of(z  - z0) whilst f/,, U:. 
u., V, and v, are odd functions of (= - =o). When these properties and the Poiseuille flow 
W = ~G(I - p - ' ) - a r e  substituted into [3.20] and then [3.19a, b]. it follows that 

Q, =0, Q:=O 

and hence, on using [4.6] and the symmetry of U, and It.., the equations for F, and F.. again 
separate to yield: 

F' I I - ~ c U ,  I ] - U *  [6.1a] 
6nl*~ - -~ cW" U , = 

6nlU - ~ I ~ V : - ~ I  c = - - 6  ~2G +~* G P ° - [ 2 *  f~:" [6. lb] 

Also [3.21] takes the form 

L = G l , , , - f ~ * + ~ ,  1+ ~:V.  G ( I - p , , ' ) - V *  ' ~ 3 x ) + O ( ~  [6.2] 
8nltf ~ 

Equ:ttion [6.1a] shows that F, vanishes when U* is zero, as expected because the 
reversibility of this Stokes flow indicates that the sphere can be neither attracted to nor 
repelled from the cylinder wall. 

The solution for the Stokes flow in a pipe due to an arbitrarily placed and orientated 
stokeslet has been given by Liron & Shahar (1978) in terms of the velocity representation 
used by Happel & Brenner (1973, p. 77), so only the following brief description of an 
alternate more direct but novel solution, which displays the symmetry of V~ and Us, is 
included here. Such symmetry is predicted by applying Green's theorem, as in section 4, 
to the fields generated by two stokeslets placed in the /) direction(s) at (p, ~o, "..) and 
(Pc,, 0, :o). 

The boundary conditions on U and V are, from [3.14], 

U =  I . c o s  6 o - p 0  
R. x + -R,'  - po.  + - :o)--'1 

I : + - - :o [fi n , ~  + ( :  _ . o ) . : ]  
V = R'~ R-"-'r-" - 

at p = I. [6.3] 

where 

I 
R-~ = [I + po" - 2po cos so + (: - :o)"] -"  '~ 

fo" ,/ 2 /~,[,;. (I +Po" 2poeosoJ)]cos2(:  :0)d2. 
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These  sugges t  the i n t r o d u c t i o n  o f  the  F o u r i e r  t r a n s f o r m s  

U = - [(0,1i + G,,,~b)cos2(z - :~ , ) -  C:5. sin 2 ( :  - z0]  d,;. 

V = "  [(V,,fi + C / b )  sin,: .(z - :,,) + v._-" cos  2 ( z -  :,,)] d2 [6.4] 

with c o r r e s p o n d i n g  p re s su re s  

p ,  = - ft, cos  2 ( :  - :0) d2, p,. = - fi,. sin ,~ ( :  - :,)) d,;.. 

T h e n  the ca lcu la t ion  can  be r educed  to tha t  o f  f o u r  t r a n s f o r m e d  fields 

{(u(')li + t,(')cb + w '"~) :  j = 1, 2 .3 ,  4} 

such tha t  

[ ( L l l  , (u ' , ' l ;  + r ' , ' ( b  + w ',~-'). ,,~, = ~ 6 , , + t i f : , + z "  &, ,+  ,?2/jK,,[i.~/(l+p,, '-2p,,cos(o)]. 

[6.51 

where  &,, is the K r o n e c k c r  del ta ,  s ince then 

17: = )~(w ~-'J - p ,w  ~') + w ~4~) + 2w (~) 

U,, = ~ (u (:~ - p,,u u~ + u ~4)) + 2u ") [6.61 

with c o r r e s p o n d i n g  e x p r e s s i o n s  for  17,, 17, fi,., (7 .... 0: and  ft,. O n  wr i t ing  

f 
"'"l f'"'"/ 

p(' J . . . .  " !,p,,,'"J 
cos  m¢o, v (j) = 2 ~ t,,. (j) sin m(t~ [6.7] 

where  q~ = I, ~,,, = 2 (m i> I), it fo l lows  tha t  s ince 

K,[)..~/(I + po -~ - 2p , ,cos  o~)] = ~ ~,,K,,().)l,,(Apo)cosmoJ (p0 < I), 
m - 0  

the b o u n d a r y  c o n d i t i o n s  [6.3] imp ly  tha t  the  F o u r i e r  c o m p o n e n t s  a re  such tha t  

[u~'_, + t"",,,. ,],,. , = K,,,(2)/.,().po); [r,,,( J)],, . j = 0 ( j  = - .  "~ 3 .4 )  

Ill .,(I) 
l l  m *" I ~ ( m *- IL, 

[,~. ( I , ] , , .  

[Wm(4)]p 

= K . . O . ) t . . ( , : . p 0 )  = [ u . , ( : % . ,  = [ . , . , ( ~ ' ] , , . ,  

= 1,,',.'"'1, - ,  = [ u . . ' " ] , , - ,  = [ u . , ' % . ,  = 0 

? 
= t~-~. [K , , ( ) . ) l , . ( 2po) ]  

(m ~> I) 

(m I> 0). [6.81 
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These fields are now determined by applying the creeping flow equations [2.1] which 
yield, for each j (suffix omitted for convenience) and each m t> 0: 

~Um U m + m v  m 
2w, = 0 

dp p 

w . = .  

rd-" I d 22 ( m ~ l ) 2 . ]  ,FdP,,, m ] 
- (Urn _+ V,J = / ~  - =F 
. Ldo -;P" 

Now since the fluid pressure satisfies Laplace's equation, it follows that 

whence 

p,~ = 2Fqj) .  )Im(Ap ) (m >1 O) 

dp,  _ m 
+ - p ,  = 2/d.q,J2 )Ira ± ,(2p). 

dp p 

Thus the equations for w,, and (u,, + vm) are of  the same form and have solutions 

I w~=qJ).)pl,,~,(2p)+~r~,(2)lm(2p) (m >10) 

Um+V,=q,J).)plm~jtl(Ap)+~S=J:(A)l~,,.j(Ap) (m >1 I) 

I 
u o = q.(A)p/,().p) + ~ so(A)/,(i.p). 

The continuity equation shows that 

s,,().) = ro().); 2q,,(A)+Sm~(2)+Sm-(2)--2r,(2)=O (m >t 1). 

Hence. if m = 0. the unknown functions qo(2) and ro(2) are given by 

1 
qo(2)12(2) + ~ ro()')/'(~') = (Uo) p -,  

I 
q,(2)l,().) + ~ ro(2)I0(2) = (wo),., 

whilst, if m ~ I, the four functions q.J).), s,,*(2) and r,.(2) are given by 

I ÷ 
q,,,(2)1,.,+2(2 ) + ~s,, (2)/,.,,. ,(2) 

i 
q,.,(2)/,,,(2) + ~ s,,,-(2)1,,,_ ,(,,1) 

2q.,,(2) 

MF Vol. 9 No. ~-.-I 

+ s . + ( 2 )  

= ( u .  + v . ) . .  

= (urn - v ~ ) p .  I 

= ( w . ) , . ,  

+ s,., - (2) -- 2r,,,().) = 0. 
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Here the determinant of  coefficients is 2-~A,,(2), where A,, has the same definition as in 
[4.14] of  Liron & Shahar (1978) after setting their Ro equal to unity. The alternative 
expression 

a,,(2) = 22/,,_ ,(I,,,/,,.: - 1,,~.~) + 2mlm(l ,_ , I , . ,  - I.~") [6.9] 

where each modified Bessel function is evaluated at 2, shows clearly the relationship to 
the m = 0 case and is of assistance in computation. 

On solving the above sets of equations for each m and j, with the r.h.s, given by [6.8]. 
it follows on substitution in [6.7] and then [6.6] that 

I 
17. = {ppol t (2P )/t(2Po) - 2 (12Ko + l ,K , ) [ p l , ( 2p  )lo(2po) + PJ,(2po) lo(2p )] 

• 1 , 2  _ IJ2  

+ [I - 2(/zKo + 1, K,)llo(2p )lo(2po)} 

,,,., A,(2) cos mo9 (Ira_ t +lm + ,)ppolm • ,().P)I,,, + ,(2po) 

[ m ] 
- 22 I . , _ , ( l . , . 2 K . , + / . , . , K , . ~ , )  - ~ I . , ( I . . , K . , _ ,  + I . ,K . )  [p l .~ . t (2p) I , . (2po)  

+ pol,,, + , (2po) l , . (2p)]  + I( l , .  _, + / . , ,  t)[I - 2m ( I . , . ,  K,. _, + I,.K.,)] 

[ - ,  } - 4  / . . _ , ( / . . ~ 2 K . + / m . , K . . , ) - - - [ K . ( / . . , , / . _ , + / j )  L.().p)/.,(,q,,,) 

after suitable manipulation by means of the recurrence relations and the identities 

I 
l ,  K m - i + l m - i K , = - ~ ,  I m _ l K m + l - l ~ + l K m - I  = 2m/2'  (m >~ !). 

Also, with A,.(2) defined by [6.9], 

[pV.~(,~po) 1 O. = (6 2 - Io/2) - ' [p6(2p). / , (2p)]4 '° '  L /,(2po) J 

- 2 £ [p / . .  , ( ,~p). / . . , ( ;~p), / .  _,(~.p)] A (" | /.,,(~.po) / cos 
" "  - L t . _ , ( ; . p o )  _1 

t n u )  

where A_ (0m is a 2 x 2 matrix of coefficients which is identical to that appearing in the 
corresponding Fourier component of 17 and, for each m t> I, 4 ("' is a symmetric 3 x 3 
matrix of coefficients, whose details are omitted here. Thus.  with U,, and V. determined 
from f.Tp, 17: by [6.4], it is seen that the symmetric form of Up involves more functions of 
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p than that for V:. The first order coefficients U,, V. in [6.1a, b] are given by 
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:0 f0* 2 ,~ d,~, ~< _- 2 (e..) od:. [6.10] U.--~ (0,).,o , ,~ 

and other quantities in these equations for F,, F: are in principle determined by similar 
calculations. Liron & Shahar (1978) showed that, for z #: z0, the integrals for U and V in 
[6.4] can be expressed as series in which the terms decay exponentially with I: -Zo] and 
exploited this computational advantage to display several profiles of  V. £, principally for 
the axisymmetric case P0 = 0. This information is not helpful to the current considerations 
which require values of  the expressions [6.10] and others for 0 ~ P0 < I. These integrals 
converge rapidly without the need for prior rearrangements and values of  V: for various 
Po are given by Happel & Brenner (1973). 

In the axisymmetric case P0 = 0, the formula for ~ simplifies to that given by Sonshine, 
Cox & Brenner (1966) and, by symmetry, [2: vanishes in [6.1b]. After the numerical 
evaluation of  two integrals, this force formula becomes 

r. 
6n~uc 

/ G - V * - ~ c 2 G  
4 

I - 2.10443~ + 2.0888c 3 

where the first order correction is the wall correction factor quoted by Brenner (1962) and 
the third order coefficient is quoted from Happel & Brenner (1973, p. 318). 

7. FLOW PAST A SPtlERE 

Hcrc S is the sphere R = I, where p = R sin a, z -- R cos ~,, and the axisymmetric flow 
W is given by 

( w = -  v: -~ fi, ~ + v l 

which, when substituted into (3.20), yields 

3,) 
4R 4R ~ ~ [7.1] 

l (3 5)F ,au /au av~ 2avl 
to, L xo +=o 

U aV 
[7.2] 

Zo f j .  ,co ¢,, v = Xo . Zo ¢, [7.3] 

at all points of  the fluid and the behaviour of  U, V near (xo, 0, "o) can be deduced from 
the simpler case Xo = 0. The fields u and v can be similarly written in terms of  reflected 

is an obvious notation. 
The spherically symmetric geometry can be exploited by writing the fields U, V as sums 

of resolved components of  the reflected velocities - ~', - 0 generated by the sphere when 
stokeslets in the radial (,q) and transverse (~i) directions respectively are placed by 
(x o, 0, zo), where R o = (x02+ zo2)l/e > !. Then 
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velocities - 6 ,  - ~  arising from radially and transversely directed dipoles. The tensorial 
character of  [3.19a, b] and [3.21] enables these to be written in the form 

F 
6n#---~ + 

3 1 _~ ,3V2¢¢)+ F, I 3V20) 

= W - ( U % ?  + V * , ) +  ~,-'V:W + , 3 ( ~ u ) ' c u r l  W -  t 2 * ) [ l -  ~ C Q  [7t4' 

L i . f~, FR . F. 03 • curl I~/+ O(~ J) [7.5] 
8n l t t  ~ = 2 w - curl W - + ~ w . curl ~ + 1 6rig 

whilst the substitution of (7.3) into (7.2) eventually yields 

Q = 2Ro---- 3 - 3:o(Ro 2 - [7.6a] 

Similarly (3.15) can be written 

II = 2 \d Ro Ro am, ~- ~ } '  
[7.6b1 

The required components of the reflected velocities 0 and ~' and their derivatives at 
(xo, 0, :o) = (Ro sin m,, 0, Rocos m~) can be calculated from knowledge of U and V in the 
neighbourhood of the stokeslets when these arc placed on the z-axis at (0, 0, Ro). Evidently 
the I.h.s. of  (7.4) can be written in the separated form 

I ~V"V: 1 ~U,  E ~V'U, FR 1 -  ~ V : -  ~ - - 
6nl ,c  ~1 / , o .  o 6n lz t  ~1 " ,o - o 

:0  " Ro ZO " RO 

after invoking [4.6] and the symmetry of U, and V: with respect to field and stokeslet 
positions. Also [7.5] and [7.6a, b] can be written 

L ! f l ,  F~ 
8 n ~  3 ~ 5  cur lW + l - -~#O; ' cu r lU) ,o -O  + O ( e  3) 

2 0 = R 0 

dV. 
Q =  - 2Ro5( o - 

Z 0 ~ R 0 

aX--o + s 
~0 ~ 0 

:O " RO 

/~ + 2Ro' k azo + 0x~ .,o-o 
,.'0 w R 0 

where it is still understood that ( x , y ,  : )  is set equal to (xo, 0, Zo) after all differentiations 
have been completed. 

In the axisymmetric case, an elementary calculation shows that 

[ lL, V(p, :; 0, Zo) = curl [p,o, + ( : : o -  I):]';: 3 p':o" + (ZZo- lyJ{  
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i.e. in the above expressions, 

It, dV.,OV,'~ - 2(3R02+ 5), - 3/7,0 ,, - 3 R o  '~ 

For the asymmetric case, an appropriate velocity representation is that used by Ranger 
(1973) for flow past a spherical cap, namely 

[ 0 ~ c o s c o ] + c u r i [  Z /~sinco] U(p, co, z; O, :o) = curl: ~ 

where 

I ( a t , , )  =~ , , - ] (R: - l )  R-a- ~ -¢ , ,  

and solutions for ~1. ¢/. and X which vanish as R--.~o are 

(~,, ~2, z) ~ (A,, B., c.)R -- . . . . .  P .  (cos a) sin" ~. 

The coefficients are determined by application of the boundary conditions at R = I, 
whence it follows eventually that the required quantities are given by 

3 ! 2/o2), • d:. ] , o .  o 
gO ~ RO 

I ( R o ~  3 3 ) - 3  3 ( ~Ro , ) ]  
~ : - I  i l) :~g,, I 2g? - '2Ro(Ro 2- I)'] i~z i)' ~~-~ 

When these results and [7. I] arc substituted into [7.4] and [7.5], the R and ~7 components 
of the effective Stokes relative velocity are given by the separate formulae 

6npt ~ 2"~ + ~ - V* - Ro -t 2Ro' 8Ro'(Ro' - I) 

I 9t t 3(3Ro' + 5)] [7.7a] 
- i - 4 ( & , -  i) + 2 ( - - ~ o ~ - ] ~ J  

,,, ) ' ] t  4~(Ro'-!)  k 4--~7 '+c~* ~ 8Ro~--~ = I)LRo'- l +T~o' 

+ 
l - - o ~  "Ro2 , 2~o2 + -'-~"¢--'~. 2 -  R o ' -  I \ (Ro - t) 2 4 ( g ? -  I) 

[7.7b] 
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and the torque L by 

L _ [3 Uxo \ 
8hi, , .  ~ L-~)~ + f~ ' )  

+ 
9~ { x ° I U ( I  43. o 4~i' ) -  V*]+zoU* 1 

[ 9 ( ,  ,)] 
16R,,'(Ro'-I) I - ~ E  &,'--I 2~ :  

+ O(t -~) 

[7.8] 

Again the accuracy of the third order truncation can be assessed because an exact 
solution for the axisymmetric flow is available from the analyses of Stimson & Jeffrey 
(1926) and Davis (1978). These provide a comparison for the force coefficient estimates 
obtained by setting U * =  0 = xo in [7.7a], viz 

( 3 ~ )  E2U 45E~U 
U I - 3 ~ - +  - V*+ "~- , 8:0~(zo: I) 

F. --0 "'"- - [7.9] 
6nILE 9~ ~-(3Z." + 5) I - - +  

4(Z0:-- I )  "~ " -  . (z . "  I )  ~ 

Values are displayed in table 2 for the independent cases of a moving sphere in quiescent 
fluid (U = 0) and a fixed sphere in streaming flow (V* = 0), both in the presence of a fixed 
larger sphere. Agreement is good whenever the gap between spheres exceeds the smaller 
radius ( : . -  I > 2~). The smaller values in the last two columns are due to the smaller 
sphere lying in the vicinity of a stagnation point on the larger sphere. 

Values  o f  

a t  spheres  ~ 2,, 

- O. I, 3 0 .0099  I. 106 
- 0. I .  2 0 .0276  I. 109 
- 0 . 1 ,  1.5 0 . 0 4 7 0  I . I I 6  
- 0 . 1 ,  I 0 . 0852  1.137 
- 0.3,  3 0 .0304  1.351 
- 0.3, 2 0 .0840  1.361 
- 0.3,  1.5 0 .1430  1.382 
- 0 . 3 ,  1 0.2591 1.445 
- 0.5,  3 0 .0520  1.651 
- 0 . 5 ,  2 0 .1437  1.668 
- 0.5,  1.5 0 .2447  1.703 
- 0 . 5 ,  I 0 .4434  1.812 
- I, 2.5 0 .1942  2.734 
- I, 2 0 .3240  2.762 
- I, 1.5 0 .5519  2.841 

r~,ble  2. 

F:/6nl~V"c when  U = 0 F../6nI~U~ when  V* = 0 

17.91 Exact  [7.91 Exact  

- I . I I I 2 0  - I . I I 2 0 5  0 .014772  0.014771 
- I. 3569 - 1.3608 0 .01890  0 .01894 

- 1.6709 - 1.7094 0 .02472  0 .02533  
- 2.2063 - 2 .6002 0 .03495  0 .04287  
- 1.0899 - 1.0900 0 .10108  0 .10107  
- 1.2763 - 1.2786 0 .1229  0 .1230  
- 1.4993 - 1.5210 0 .1523 0 .1543  
- 1.8505 - 2.0481 0 .2067  0 .2293 
- 1.07250 - 1.07252 0 .21759  0 .21758  
- 1.2163 - 1.2178 0.2541 0 .2542  
- 1.3793 - 1.3920 0 .3015  0 .3037 
- 1.6198 - 1.7266 0 .3884  0 .4113 
- 1.0719 - 1.0720 0 .510780  0 .510780  
- 1.1215 - 1.1220 0 .5405 0 .5406  
- 1.2028 - 1.2065 0 .5957  0 .5969  

Evidently in the region p : + ( z -  !)2= 0(62  ) where 6 ,~ I, the flow field W has 
velocities of order U6: and to this order is a stagnation flow at a plane. Indeed, on 
introducing the rescaling 

3 f i ,  x. = 6,to, Zo = I + 6"2o, c = 6~, ~ U62 = A, ~ ' 6  = 

F,, = ,~P.., F .  = 6,e,, L = 6 - '£  

into the formulae [7.7a, b]. [7.8] and letting 6.-.0, the corresponding stagnation flow 
formulae [5.6a. b] and [5.5] are recovered. 
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8. FLOW T H R O U G H  A HOLE IN A PLANE 

Here S is the region p > I of the plane : -- 0 and W is the pressure driven flow described 
by Happel & Brenner (1973. section 4.29). Thus 

W = U (sin v sinh 3. fi + cos v cosh 2 ~) cos z v 
(sinh:). + cos-' v) cosh ~. 

[8.1a] 

where 2, v are elliptic coordinates defined by p = cosh 2 sin v, : = sinh 2 cos v (0 <<, v <~ n/2, 
- ~ < 2 < oo) and U.f is the velocity at the origin, i.e. the center of the orifice. The 
corresponding pressure p,  is given by 

s inh 2 + tan  - t ( s inh  2 ) 1  [8 1 b] 
p,. = - 2#U sinh" 2 + cos 2 v 1 

) p,.(0, : )  = - 2 # U  + tan  - t:. 
U-: 

= • W(0. : )  : - + 1 "  

In particular 

and hence the axisymmetric formula [3.23] becomes 

~ - v *  ~ (:o: + I):  -o + I - ~ - 5 ~- 7:o'_lJ 
F.. 

6nl~c 

[ ' ( ' / ]  + I - ~ c v = + ~ c  ~ v..-~V:r..  [8.21 

Now, according to Davis, O'Neill & Brenner (1981), the reflected velocity in this axisym- 
metric case is such that 

v . . :  = ( : ~ - I ) ( : o ~ - 1 )  F + =oC [8.31 

where F and G are harmonic functions of p, z given by 

2 e -kl:lJo(kp) s sin ks F(p, :; :o) = -~ z--oT ~. s- ~ ds dk 

f f  I - s ink  f f  Zo2-S 2 2 e_kl:tjo(kp) LZo_r~ + k G(p, : ;  .%) = ~ (z02 + s2)2 

[8.4a]  

cos ks ds I dk. [8.4b] 

The reflected velocity due to the corresponding dipole singularity can be similarly shown to 
have ~-component 

v . i = - ( z ~ z - I )  a'Fdzo2-- z-d:odG 

and hence, since F(0, z; :o) and G(0, : ;  z0) are evidently symmetric, it follows from [8.3] that 
v. -- - ~V'V. in the force formula [8.2] as predicted in section 4. Further, by observing that . . 

[8.3] also implies 

a (v .  2) = i a~ 5 zV'(v • i )  + zoG 
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and exploiting the simplified form of [3.16] for a symmetric function, all the required 
quantities in [8.2] can be calculated from knowledge of 

3 E" v. = (v .  _-').. :o = , 4 1 t a n - t % +  . ~  
:o + 1 3(:,~z+ !) 2 

(Davis et al., 1981, equation C6) and 

H e n c e  

G(O'z°;z°)=n (:o"+1) 2+ " ds = -  ~ ds - - -  (:0" ¥ s")' ~ z0 + s" 

dV: 3 F /  I 2 16:0z ] 
d:0 - 2n:---~ L-:0 tan - t % + ~ , = .-'o'+ I ( - o ' +  I)  2 3(- 'o + I ) - ~ ]  

, 
- -  = - -  2 o + - -  v. ~ V  2V. t a n - I  

" " if-'0" 

I 2 I0:o: 1 
:o '+  I (:o '+ I)2 3(zo'+l)~ 

The numerical collocation technique has been successfully applied to this axisymmetric 
problem by Dagan, Weinbaum & Pfeffer (1982) and to its disk counterpart by Dagan, 
Pfeffer & Weinbaum (1982). The first mentioned authors constructed, for each half space, 
stream functions in terms of the unknown velocity profile at the orifice, matched them 
analytically to secure continuity of the kinematic and dynamic fields and then used the 
collocation technique described in detail by Ganatos, Pfeffer & Weinbaum (1978) to satisfy 
the non-slip boundary condition at the surface of the sphere. Comparison of the two 
methods can now be made by setting U = 0 (sphere moving in quiescent fluid) or V* = 0 
(pressure driven flow past a fixed sphere) in [8.2] in order to obtain force coefficients 
corresponding to those displayed in tables 6 and 10 respectively of Dagan et al. (1982). 
Agreement is remarkably good, except near the top right corner of table 3. 

Table 3. Values of the force coefficients F../6n#V*t (quiescent fluid) and F../6n#U~ (tixed sphere) 
given by formula [8.2] for various sphere radii ~ and sphere-to-orifice spacings zo/~ 

: o / t  t = 0 . 1  ¢ = 0 . 2 5  t = 0 . 5  t = 0 . 7 5  t = t . 0  ~ = 2.5 ,- = 5.0 

1.0516 1.1581 1.4593 1 . 8 7 5 5  2 . 2 6 5 9  2 . 8 3 6 8  2.8380 
I.I 

1.0321 1 . 0 2 6 4  0 .88548  0.82319 1.0681 1.2348 0.42048 

1.0519 1 . 1 6 2 6  1 . 4 7 2 8  1 . 8 6 7 5  2 . 2 0 7 7  2 . 7 5 8 7  2.8302 
1.25 1.0288 1.0091 0.86220 0.84774 1 .0248  0.76717 0.24261 

1.0526 1 . 1 7 0 2  1 . 4 8 7 2  1 . 8 3 1 5  2 . 0 8 6 3  2 . 4 6 8 2  2.5059 
1.5 1.0225 0.97746 0 .81957 0.79972 0.82430 0 .36395 0.10522 

1.0542 1 . 1 8 4 9  1 . 4 8 4 3  1 . 7 1 3 2  1 , 8 3 9 6  1.9856 1.9981 
2 1.0068 0.90589 0.70094 0,57509 0 .45763 0.11621 0.030870 

1.0582 1 . 2 0 3 0  1 . 4 0 8 0  1 . 4 9 2 0  1 , 5 2 3 8  1 . 5 5 1 7  1.5537 
3 0.96434 0.74631 0.43752 0.26310 0 .16785 0.030874 0.0078586 

1.0626 1 . 2 0 2 8  1 . 3 2 4 7  1 . 3 5 7 3  1 . 3 6 7 6  1 . 3 7 5 7  1.3763 
4 0.91014 0.59098 0.26860 0.14027 0.083788 0.014294 0.0036043 

1.0667 1 . 1 9 0 9  1 . 2 6 1 8  1 . 2 7 6 2  1 . 2 8 0 4  1 . 2 8 3 5  1.2837 
5 0.84824 0 .46045 0.17554 0.086043 0.050131 0.0083269 0.0020924 

1.0701 1 . 1 7 4 5  1 . 2 1 6 6  1 . 2 2 3 8  1 . 2 2 5 7  1 . 2 2 7 2  1.2273 
6 0.78250 0.35951 0.12219 0.057996 0.033391 0.0054771 0.0013740 

1.0735 1 . 1 4 2 4  1 . 1 5 9 0  1 . 1 6 1 3  1 . 1 6 1 9  1 . 1 6 2 3  1.1623 
8 0.65181 0.22793 0.068195 0.031411 0.017892 0.0029016 0 .~7268  

1.0730 1 . 1 1 7 3  1 . 1 2 4 8  1 . 1 2 5 7  1.1259 1.1261 1.1261 
10 0.53485 0.15383 0.043220 0.019647 0.011139 0.0017975 0.0004499 
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In contrast to the examples cited in the previous three sections, no simplifications of  
[3.19]-[3.21] are available for the off-axis sphere. W is given by [8.1] and the reflected 
velocities U, V and hence ~ by the results of  the next section. A practical aspect of  this 
asymmetric problem has been provided by Dagan, Pfeffer & Weinbaum (1983) who, by 
experimental verification and an approximate theory based on reasonable estimates of  the 
force and torque coefficients, showed that the trajectory of  a neutrally buoyant sphere 
departs significantly from the undisturbed fluid streamline in the vicinity of  the orifice wall 
as the opening is approached and that in multi-particle flow into the pore, the particles 
tend to aggregate near the orifice wall. The pressure driven flow [8.1] provides an excellent 
model of  the basic fluid flow near the pore. 

9. A S Y M M E T R I C  F L O W S  D U E  TO A S T O K E S L E T  P L A C E D  
N E A R  A H O L E  IN  A P L A N E  W A L L  

The reflected velocity fields - U(p, co, z; P0, z0) and - V(p, co, z; Po, ,:o) satisfy [2.1], 
vanish at infinity, remain hounded as ( p -  I)2+ z2--,0 and on the wall take the values 
prescribed by [3.14], i.e. with r 2 = p2 + po2 _ 2ppo cos co + Zo2, 

,.,? 

V = = - ~ [p/3 - Po(/3 cos co - cb sin co) - :o~.] 
r 

/ °~:o/ '~ c'~ IP/3 - P°(/3 c°s co - 03 sin co)l  = I - z  + at z---0, p > i 
r ~ r 

U =/3 cosco -o 3  sinco ( p o - P  cosco)[p/3 
r r.~ - Po(/3 cos co - ¢b sin us) - zoS] 

= - "° ~Po + ~ P o  r 

[9. I a] 

2 
+ -  (/3 cosco - 8  sin co) at z = 0 ,  p > ! [9.1b] 

r 

The normal components of  [9. la, b] give rise to velocity fields whose .~-components are 
even functions of  z and which have representations of  the same form as in the axisymmetric 
case. The tangential components of  [9. la, b] excite velocity fields whose ~-components are 
odd functions of  z and hence zero over the whole plane z = 0. Thus write 

V = I - zo (Fz" - : grad F) + (u<'/3 + v~%3 + w">~ sgn : )  e -t/:l dk [9.2a] 
2 

fo U = - zo (F3 - ." grad F) + (u~2~/3 + v~2~ + w~2~ sgn z) e -kl:l dk [9.2b] 

where F(p, co,-; Po, :o) is an even function o f :  which satisfies Laplace's equation. 

, ~"F I ~ F  i ~:F 6~2F 
[9.31 

everywhere except at points on the wall (z = O, p ~> I) and the boundary conditions 

F(p, ~ ,  O; Po, Zo) = (p2 + po2 _ 2ppo cos co + Zo 2) -oe-~ 

F=O[(pZ'l" z2) -(I/2~] as pz-l- z2-.-~oo. 

for p > l  [9.4] 

[9.5] 
MF VoL 9 No. 5--1" 
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Also the remaining velocity fields in [9.2a. b] are such that  

( u  "~ + i v " ' )  d k  = 

"c (u I'j + ic ''~) dk P - Po e ..... - = --  + e - "' 
, ~P0 \ r 

when p > i [9.6] 

~ '~(u ' ' + i r I j ' ) k d k  = 0  when p < 1  ( j =  1,2) [9.7] 
) 

f ' w ' j ~ d k = 0  for a l l l ,  ( j =  1,2). [9.8] 
) 

Consider  first the function F w h i c h  physically is the reflected potent ial  that  arises when 
a unit point  charge  is placed at (P0, 0. z0) in the presence of  an ear thed perfectly conduct ing  
wall (z = 0) which has a hole o f  unit radius (p < I). It can be calculated by solving the set 

o f  mixed b o u n d a r y  value p rob lems  that  are obta ined  by using the expansion 

- = (P" + Po" - 2ppo cos (o + zo') -~:~ = t,, cos m(o e-a:"J,,,(2po)J,,,(2p)d2 [9.91 

valid for zo > 0. By suitable superposi t ion,  the solution for F is evidently then given by 

F(p,  "h :" Po. z,) = ~',, cos m¢o e - ~kl:l ~ a:o,j,,,(k p )J,,,().po)a,,(k. 2 ) dk 62 [9.10] 
m - l )  ) ) 

provided, for each m 1> O ,  

I ' a, .(k,  ; , . ) J . , ( k p ) d k  = J,,,(2p) (p > I) [9.1 la] 
I 

in order to satisfy (9.4) after substitution of  [9.91 and 

o' ka,,(k, ).)J,,(kp) dk = 0 (p < I ) [9. I I b] 

for an even funct ion o f  z. By compar i son  with the solution [4.2.23] of  [4.2.15/16] given by 
Sneddon  (1966), it then follows af ter  use o f  the Sonine integral 

= I9,2] 
, t ' - ' , . /U ; -p ; )  qk2 ; . )  p ' - ' ""  

(Sneddon,  1966, equa t ion  2.1.32), that  the dual integral equat ions  [9.1 la. b] for each o f  

the set o f  funct ions {',,,(k, 2); m >/0} have solut ion 

a,,.(k, 2) = ,/(k2) sJ,~la.~(ks)J,,.llz~(2s)ds (m >~0). [9.13] 

which integral exists only  in the generalised sense. The  result 
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fo g , H<, - p) I,"-J., + l|/.l(kt )L,(kp ) dk 
" ~ n t k t )  ~ / t  z pZ 

[9 .141 

(Sneddon, 1966. equation 2.1.20). where H ( x )  denotes the Heaviside unit function. 
provides verification that [9.13] solves [9.1 la. b] for each m/> 0. Expression [9.10]. which 
reduces to [8.4a] when P0 = 0, can be written 

F(p.  ¢~. :;  Po. :o) = E~, cos m w  sf,,(p. J: l; s ff',,(Po. %; s)  as. 
m = O  

[9.151 

~0 J2 f = ( p , z ; s ) =  21/"e-a:J , . (2p)J .+(i /z)(As)d2 (m >10). [9.16] 

where 

Evidently Fis a symmetric function of the field and source positions (p, co, =) and (Po, 0, -'0), 
Alternative forms of F are given below by equations [10,6] and [A3]. 

Now consider the integrals in [9.2a. b]. If the corresponding pressures are written 

vfO 
~ 

d [ O F \  p(") e -*1:1 dk 

and the Fourier series [6.7] are introduced, then, as in section 6, the equations of motion 
[2.1] imply that for each field (suffix omitted for convenience): 

p., = 21(q.,(k )J, .(kp ) 

I 
wM = - qm(k )p J , . .  s(kp ) + -~ r.,(k )J, .(kp ) 

(m >I O) 

4:. u,. + v,. = -- qm(k )pJ., + l ± t(kP ) + "~ s , .±(k )Jm± t(kP) 

q~,(k ) + ~ Is,. ÷ ( k )  + s,. - (k)] = r=(k) 

(m >i !) 

uo = - qo(k )pJ2(kp ) + ~. so(k )J~(kp ), so(k) = to(k). 

The boundary condition [9.8] implies, provided qo(0)--0 which is subsequently verified, 
that 

1 m 
~. r.,(k ) = q'..(k ) + -ft. q,.(k ) (m >t O) 

and hence in [9.2a, b] 

;o fo .7 p(J~ e -*l:l d k  ( j  = I, 2) w (j~ sgn .- e - tl't dk = [9.17] 
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Further  substi tution for r,~(k) then shows that 

I---U--. a' ~,(kp) + .t.,÷,(kp) 

I ~ , n  - -  l ' r n  = - -  

d s . ( k  ) 
[q,.(k)J., , ( k p ) ] + - - ; - - J , .  , (kp)  

dk  - h "  - 

(m /> 1); 
d [-qo(k) ] 

~o = k ~ [ T ' t ' ( k P )  

[9.18] 

where S , . ( k ) =  ~,[s.~+(/, -) - s . , - ( k ) ]  (m >I I). 
Now,  from [6.7]: 

u + it" = u o + ~ [(u,, + v,,) e .... + (u,, -- c,,,) e . . . . .  ] 

and. from [9.9] and the revurrence relations, it may be shown that 

= J,,,(),po)J,,, ~. ,(At') e""" - 
r ~ 0 m = l  

x j,,,(2po)j,. _ ,(2p) e ....... }d-d~ I -  V ] 2  dk. 

Hence condit ions [9.6] imply 

(u . .  + t . . ) , , . ,  d k  = - [d, , , (a)  - e , . ( a ) ] J , .  ~ , ( 2 p )  d i  
I ) 

(u,. - Vm),,. S d k  = [ d , . 0 . )  + e, .O.)]J. ,_ s(A.P ) d2 

(uo),,. ; dk = - do(2 )Jl(2'.p ) d2 
) 0 

(m >/I)  

[9.191 

where 

d,,( '(2) = 2Zo e-a:°J,,(2po) (m >t 0); 

d,,(")(2) = ( I - "- - a:o , ' z-o) e J,,,(zp0 ) (m ~> 0); 

e.f)(2) = 0 (m >1 i) 

2?iq .. 
e,,,(-')(2 ) = -z-- e -  ":oJ,,(.~.p0) 

/.Po 
(m >/ I). 

[9.201 

The determinat ion o f  q,,(k) is now straightforward because, on substi tution of  [9.18], 
condit ions [9.19] and [9.7] yield the dual integral equat ions 

~0 ~' J~0 uc 
k - t q o ( k ) J ~ ( k p ) d k  = do(2)J~(2p)d2 (p > I) 

fo ~ qo (k ) J~ (kp )dk=O (p < I) 

which by compar ison  with [9.1 la, b] have solution 
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dr0 
~ 

k -'qo(k) = at(k, ,;.)do(,;.) d2 [9.21] 

where a~(k, 2) is given by [9.13]. When P0 = 0, V is axisymmetric and the only non-zero 
contribution to the integral in [9.2a] arises from do"t(2)=,;.zoe-;=". The resulting :'- 
component of  velocity is 

: qo"~(k)Jo(kp) e -k[:l dk = ::o k2al(k, 2) e -~kl:l +~:O~Jo(k p) dk d). 
0 

and. in agreement with the quoted results of  section 8, reduces to zzoG(p. : ;  :0). given by 
[8.4b]. after substitution for al(k. 2) and subsequent manipulation. 

However. for each m >t I. the integrations by parts necessitated by the substitution of 
expressions [9.18] into conditions [9.19] and [9.7] yield a connected pair of dual integral 
equations for S,.(k) and q,.(k), namely 

and 

~ '~ [S,.(k) - 3q,.(k)]J,.+,(kp) dk = 0 (p < I) 
) 

k-'[S.,(k ) -  2qm(k)lJm.,(ko)dk = - [dm(2)-e.~(2)lJm.,(2p)d2 
) 0 

}¢' 

(I' > I) 

if these are 
S,,(k)+ qm(k) respectively, then by comparison with [9.1 la, b], it follows that 

S, dk ) -3qm(k )=  - k  am.,(k. 2)[d.~O.)+2-'q.d2)-e,~(2)]d2 
I 

f: Sm(k)+qm(k)=k a~,_,(k, 2)[dm(2)+).-'q,~(2)+e.~(2)ld2 

[Sm(k)+q,.(k)lJ.,_dkp)dk=O (p < I) 

f: f: k-'Sm(k)J, ,_,(kp)dk= [d,.(2)+e,~(2)lJm_,(2p)d2 (p > I). 

regarded as disjoint dual integral equations for Sin(k)-3qm(k) and 

[9.221 

Thus, by subtraction, the following Fredholm integral equation for k-'q,,(k) is obtained 

f: 4k-'q. ,(k)= [am_,(k, 2)+a,~÷,(k. 2)l[d,~O.)+ 2-'qm(2)ld2 

+ [a.~_,(k. 2)-a.~. , (k .  2)le.~(2)d2 [9.231 

Now, by suitable differentiation of  the identity 

~o ~ ' )~ ' -  J J,(kt)J,_ ~(2t) dt = T H(k - 2), 
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1980, section 6.5127, it may be shown that 

tJ~(kt)J,(2t) dt  = ~ 6(k  -- ).7 [9.24a] 

fo ~ ,~,.- i 
tJ~ ÷ ~(kt)J~_ i(,;.t ) dt = 2v ~77z 5 H ( k  - ). ) - 6 (k  - ). ) [9.24b1 

where 6(x) denotes the Dirac delta-function. The results [9.24a. b] respectively are 
sufficient to deduce that 

(m >/O) [9.25a] 

(m/> I). [9.25b] 

£ ~ am(k, 1* )a,,(l t, 2) dl.* = a,,(k, 2 ) 
) 

f ~ a,.  . i(k. l~ )a,, _ j(ll. 2 ) dl~ = a,, _ j(k.  2 )  
) 

Then it follows simply that the solution of  [9.23] is 

k - l q , , ( k ) = - j  [ 2 a , , _ , ( k . ) . ) + a , , . , ( k , ) . ) l d , , ( 2 ) d ) .  
) 

+ ~ [a,, _ j(k. ).) - a .... ,(k, 2)1e,,,(2) d2. [9.26a1 
I 

By substitution in [9.22]. the other mth function required below is given by 

k - ' [ & . ( k ) - q , , , ( k ) l =  [a ..... ,(k, 2 ) - a  .... ,(k..;.)ld,,(2)d2 
) 

+ 3 [ a , , , , ( k , ) . ) +  2am,~(k. 2)le,~(2)d2 [9.26bl 

The end result of  the above calculations is that the integrals in [9.2a. b] have the Fourier 
series expansions 

f0 "~ (u,6 + va3 + w.-" sgn z) e -kl:l dk 

= ,6 E,, cos m ~  J',,,(kp)( 1 - klz[) + 
m ~ 0  

S,,,(k ) - q,,(k ) 
k 

"-' ] "kp J, , (kp)  e-*J:l dk  

- 2 c o ~  sinm~o q k )  n. .~. l j , , , (kp)(i-k[.:[)+ 
i k p  k 

Io +z.:  c,, cos rmo q,,,(k)J,, ,(k)e-kl:ldk [9.27] 
rt, t I 0 

where {q, , (k);m>~O} and { S , , ( k ) - q , , ( k ) ; m  >1 1} are given by [9.21] and [9.26a, bl, 
{a,,,(k, 2); m t> 0} by [9.13] and the functions {d,,(2); m /> 0}. {e,,().); m /> I} appropriate to 
the two velocity fields by [9.20]. 
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With the aid of  [9.27], an inspection of the ~-component of [9.2a] and the ~-component 
of [9.2b] makes it evident that It. and Up are, as in section 6, symmetric functions of  the 
field and stokeslet positions (P, ~,  z) and (Po, O, Zo). The reflected velocity I~ is determined 
by substitution of  [9.2a. b] into [3.15]. 

10. M O D I F I C A T I O N  O F  S E C T I O N  9 F O R  A D I S K  

If instead of the plane with an orifice, S is the complementary boundary, namely the 
disk, then conditions [9.1a, b] apply at p < 1 and the solution forms [9.2a, b] remain valid. 
The function E, appearing instead of  F. is given, as in [9.10], by 

fo ;o E(p. co. : :  Po. :0) = E,. cos m~o e -(*1:1 +~o)J.,(kp)J.,(2po)b~.(k. 2) dk d2 [10.1] 
m = O  

provided, for each m/> 0. 

f f  ) .t.,(2p) (p < ) bin(k, 2 )y,.(t,-p dk ! 

[10.2] 

fo g kb.,(k, 2 )Jm(kp ) dk = 0 I (p > ). 

With the aid of the other Sonine integral 

f", J,(2t ) ~/p2t'÷'dt ~/r'~-~ t-------~ 2 = . [10.3] 

(Sncddon. 1966, equation 2.1.29). the dual integral equations [10.2] have solution 

;o' b,.(k, 2) = ~ sJ,._u/2)(ks)J.,_(t/2)(As) ds (m >~ 0) [10.4] 

verified again by [9,14]. Then, like [9.15] and [9.16], [10.1] can be written 

fo E (p. co. z; po. zo) = G, cos moJ se,.(p, lzl; s )e,.fpo, zo; s ) ds, 
m --O 

where 

e~.(p,z:s)= 2'/2e-a:J,.O.p)J.,_(,m(2s)d2 (m/> 0) [10.5] 

Estimates of  E near : = 0 for p > 1 can be obtained by using [10.3] to write [10.5] in 
the form 

fo era(p, : ;  s) =-2 2'al,,_(tm(2s)K,,(2p) cos 2: d2, 

valid for = >0 ,  p > I and 0 < s  < I. By similarly writing [9.16] in the form 

fo 2 2 II:I.,÷.a)(~)K.(2 O) sin 2- d2, L,(p, : ;  s )  = rc 

valid for z > 0, p > I and 0 < s < I, estimates of  F near the plane can be obtained after 
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using [9.24a] and the summation [9.9] to rewrite [9.15] for z > 0 as 

F(p. a;, z; Po. z,,) = [p: + p,,: - 2pp~, cos ~,J + (z + zo)z] -'~ '~ 

- C. cos m(o sf. .(p.[z[:s)l;.(p,, .z, , ' .s)ds [10.6] 
r a  = O  ) 

In the second part of  the solution, the only change necessitated by the interchange of 
the ranges of validity of  conditions [9.6] and [9.7] as far as [9.25a] inclusive is the 
replacement ofa, , (k ,  2) by hm(k. 2). given by [10.4]. for each m >/0. However. since [9.25b] 
is replaced by 

f ' h,,, t (k. l~)h, . . l(I t . ) .)d~t =h. , .D(k.  2) (m >t- I). 
) 

the net effect of the changes on the solutions [9.26a. b] is that. for each m >/ I. a,,, ~(k, ,;.) 
is replaced by h.., ~(k. 2). a,. ~(k .  2) by h,._ j(k. ,;.). S . . ( k ) -  q,.(k) by q~ . (k ) -  S,,,(k) and 
e.,(2) by -e . , (2 )  whilst d,,,(2) is left unchanged. Thus 

k Iq.(k ) 

k ~ tq,,,(k ) 

k '[S,.(k ) - q,,,(k )1 = 

= f'J,,' h,(k. 2 )d,,(,;. ) d2 

I f '  [h .... t(k, 2) + 2h,,~ ,(k. 2)1d,,,(2) d2 

f* I [h,,, j(k. 2 ) - h  .... ~(k.2)]e,,,(2)d2 

~ [h .... , ( k . i ) - b  .... , ( k . i ) ld , , , ( i )d2  
) 

+ -j [2b,. _ z(k. 2 ) + b,,, ~ s(k. 2 )le,,,(2 ) d2 
) 

(m >i I) 

are the results required for substitution in [9.27] and the symmetry of V. and U,, with 
respect to (p, oJ,-.) and (Pc, 0, .%) is again apparent. 
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APPENDIX  

An alternative form of  F(p, to, :; p,,, :,,) can be readily constructed in terms of  toroidal 
coordinates, the natural system for the given geometry, and consists of  a sum of  separated 

-" m p m solutions of  [9.3] which involve the Mchler conal functions K~ = _ ! . , .  Thus, on writing 

sinh ~ sin 

P cosh ~ - cos ~ cosh ~ - cos q 

with p,;. : ,  defined similarly in terms of  ¢,,. ~/.. it follows that 

p " + p," - 2pp, cos to + ('. - .%)-" = 
2 [eosh ¢ eosh ¢,, - sinh ~ sinh ~,, cos to - cos ( r / -  rh,)] 

(cosh ¢ - cos q) (cosh G0 - cos qo) 

[All 

Now, according to Zhurina & Karmazina (1966. equation 5.8), the inverse of  the distance 
r between the singularity (Po. 0...%) and a point (p. to, 0) (p > I. i.e. ~/= 0 or 2n) on the wall. 
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is given by 

1 
- = (P'- + Po: - 2ppo cos ~ + :o2) -"/2~ = (cosh ~ - !)": (cosh ¢o - cos rlo) t :  
r 

fo ~ cosh s(rr - r/0 ) 
x cosh sn 

ds ~ E,.( - 1 )"K, "~ (cosh ¢ )K,- " (cosh ~,,) cos m~  
m ~ 0  

where 

[A2] 

K,-"(cosh~) F (~ -m- i s )  ( -  l)" 
K~"(cosh~,  F ( ½ + m - - i s ,  , - . f i l s ' + ( r - ~ ) " l  

(m/> 1). 

The formula [AI] enables the corresponding expansion for the inverse of  the distance 
between (Po. 0,.%) and (p,(o, : )  to be readily written down, if required. Further .  since 
(cosh ~ - cos r/)~/-'e t"TK," (cosh ~) cos m(o satisfies [9.3], it follows that F(p, ~o, :; Po, z0) is 
given by 

~" '~ cosh s(n - r/) cosh s(n - v/,,) 
F = (cosh ~ - cos r/)' "~ (cosh ~o - cos r/.)B,': ~,,, cos m+,~ j ,  - - .-; - 

, . .  o ~ c o s h -  srr 

K," (cosh ~ )K," (cosh c~,,) 
x [A3] 

with the symmetrical dependence on the field and source positions again apparent .  In the 
axisymmetric case p o = 0 ,  i.e. ¢ o = 0 ,  this expression reduces, because K , ( I ) =  1 and 
K , ' ( I ) = O  (m >t I), to the form given by equat ions  [3.1], [3.2] o f  Davis et al. (1981). 
Unfor tunate ly  the practical use o f  the formula  [A3] for F is likely to be restricted by the 
limited knowledge of  the values o f  the conal functions. 

For  the complementa ry  problem involving the disk, the toroidal  coordinate  lies in the 
range - n to n and the corresponding form of  [A3] is obtained by replacing n - r/, n - r/o 

by r/, r/(~ respectively. 


